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ABSTRACT 

A new proof is presented of a theorem of Sinai that says that, if ~ is an 
endornorphism and zr a probability distribution with H(~r) =< h(O), then ~b has 
an independent partition with distribution rr. 

If  one interprets Z as a t ime paramete r  in {d,'}~z, where 4' is an invertible 

measure  preserving t ransformat ion,  then the usual i somorphism theory deals 

with non physical codings in the sense that their implementat ion requires 

looking infinitely far  ahead into the future.  For  this reason there has been some 

interest  in unilateral i somorphism theory. We propose  to give here a new proof  

of Sinai 's theorem [4] in the hope that it will help to answer  the questions about  

unilateral weak i somorphisms be tween VWB systems.  We assume familiarity 

with standard results as presented in [2]. 

1. Le t  4, be an ergodic measure  preserving t ransformat ion of (X, ~ ,  ~ )  with 

posit ive entropy,  and suppose  that a = { A , . . . , A o }  is a generator  with 

h ( 4 , , a ) > 0 .  Let  7r=(Tr(1),  7 r (2 ) , . - . ,Tr (p) )  be a probabil i ty vector  with 

H ( T r ) = - Y ~ T r ( i ) l o g T r ( i ) < = h ( c b ,  a).  The theorem we are after  may be 

phrased this way: 

THEOREM 1. I f  H ( z: ) <-- h (th, a ) ,  then there is a partition ~, measurable with 

respect to V o 4, ~a, such that: 

(1) dist/3 = ~r 

(2) {~b'/3},ez are independent. 
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We use the notation dist/3 for the probability vector (/~ (B,), ~ (B2), • • . , /~ (B,)). 

The first lemma that we state is well known and follows from the basic 

properties of the conditional entropy. Its function here will be to allow us to 

work at all times with finite partitions and to avoid using the machinery of 

measurable partitions. The phrase " ~  holds for e-a.e, atom C of  a partition y "  

will mean: 

(3) ~ c ~ v :  ~' holds for c~ /x  ( C )  > 1 - e .  

LEMMA 2. Let  7 be a finite partition. Then given e > 0  there is an no = 

n0(e, y)  such that for all m > n >= no we have that TIC is e-independent o f  

(V,"+~+'y)[C for e-a.e, atom, C, o[ VT~b'y. 

Next  we shall introduce a certain measure for the deviation from indepen- 

dence that is suited to the kind of iterative construction that will be the main 

part of the proof. Distances between probability vectors will be measured by 

[Irr- 7r'll = E~lTr(i)-~r '(i)[ .For fixed rr, d(~r,/31r/) will measure how close the 

distribution of /3  is to ~" on most atoms of 7/, and will be defined by: 

(4) d(Tr,/3 {n) = ~ {[rr-dist( /3 [E){I. /J ,(E).  

Clearly d(Tr,/3I'q)= 0 means that/3 is independent of 7/and dist/3 = 7r. We 

shall use the notation 77' C r / i f  the algebra of 7/' is contained in the algebra of 7/, 

i.e., r/ is a refinement of r/'. The next lemma is readily proved from the 

definitions. 

LEMMA 3. I f  ~7'C~l then d(~,~l~l ')<=d(lr,~Irl) .  

Using this we can now define: 

(5) Di (Tr,/3) = lim d(Tr,/3 l , . ~  X), th'/3)= sup d(~r,/3 I . _ _ . ~  X), ~b~/3). 

The equality of the limit and supremum follows from Lemma 3. Naturally 

Di (Tr,/3) = 0 if and only if/3 is an independent partition with distribution 7r. We 

shall also need a result about  the continuity of Di if /3 and /3' are ordered 

partitions of the same space; we will let d(/3,/3') denote the measure of the set 

of points labeled differently by /3  and /3'. 
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LEMMA 4. 

implies 

(6) 
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Given/3, "rr and e > O, there exists a 8 > 0 such that d (/3, /3') < 6 

Di (7r,/3') ==_ Di (rr,/3) + e. 

PROOF. In lieu of a detailed computat ion we present  the idea of the proof.  

The no in Lemma 1 depends upon the rate with which H ( y  I V ~' 4) i 7) approaches 

h(~b, 7). Now if/3 '  is sufficiently close to/3, then the no for /3 '  can be taken just 

as the no for /3, and this implies that one can estimate Di(zr,/3') by 

d(~r,/3tVT°(hl/3'), which easily implies the lemma. • 

We shall need a mild sharpening of a theorem that can be found in [1]. The 

use of it seems to be essential to the argument here. 

THEOREM 5. Let ¢b be an invertible ergodic measure preserving transforma- 

tion. Let  /3CV=-=~c~, and H(Tr)<-h(fb, a ) -h ( (h , / 3 ) .  Then there exists a 

partition 7 C V=_= O ~a such that: 

(i) dist 7r = 3' 

(ii) (4~'V}~z are independent 

(iii) V ~-~ d? ~/3 is independent of  V =® ck ~7. 

PROOF. Let  /3 be an independent  partition such that /3 c VT~b~/3 and 

h(6, /3)  = h(4~,/3). Lemma 5' in [1] implies* that there exists 3, satisfying (i), (ii) 

and (iii) with /3 replaced by/3.  But then (iii) follows by Le mma  2 of [3]. • 

We can now describe in outline the proof  of Theorem 1. Denoting by 

~t = Vo 4~a, we are trying to construct /3  C~¢ such that Di(Tr,/3) = 0. Suppose 

then that we have a first approximation/31 C.ff with Di (Tr,/3,) small. One can 

obtain such approximations by taking an independent/3j ,  approximating/3j by a 

/3', C V_~N&ia and setting /31 = chN/3'I. Now we must improve /31, i.e., find a 

/32 c M such that Di (Tr,/32) < Di (Tr,/31), and for the procedure to converge we 

must do it in such a way that/32 remains close to/3,.  Look at how/31 divides an 

atom B of V~b'/31. Since Di(Tr,/3,)> 0 (otherwise we would be done), there 

are some atoms of/31[B that are too small compared to 7r and others too large. 

We want to change/3,  by moving a little mass f rom the excessive atoms of/311B 

to the deficient ones. 

In doing so we improve the distribution of /3 ,  on atoms of V~b~/31--but  of 

course for  the new partition/32, so obtained, we compute  Di (~',/32) by looking 

at/32 on atoms of V ~ 4~'/32. For  this reason we must exercise care in moving the 

* The assumption made there that ~b be mixing is not really needed, as a careful examination of 
the proof shows. 
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mass. Now the basic idea is this. Assume that h(~b,/31)<h(6,  a ) ,  and use 

Theorem 5 to get an independent 3' = {C, ,X  ~ C,}, with V~_~4,~3, independent  of 

VT~b'/3,. If ~ (C, )  is small, then we modify/3 ,  to/32 by moving C, intersected 

with an excessive atom of /31 tq B (B E V~"~b~/31) over  to a deficient atom of 

/31 N B. The complete independence of 3~ enables us now to obtain a reduction 

Di (Tr, 13,) - Di (zr,/32) that is roughly proportional to the change d (/31, /32). To be 

sure, the/32 obtained in this way is not necessarily contained in M, but for  that 

replacing 3" by 4~ MT changes nothing and, for  sufficiently large/z,  ~b M3, can be 

approximated arbitrarily well by a partition in M, which by Lemma 4 says that 

we lose only a small part of what has already been gained. 

The main technical complication in carrying this program out is to make sure 

that, in the process of constructing/32, we do not suddenly go up in entropy so 

that h(4~,/32)= h(~b,a), which would prevent  us f rom iterating the step just 

described. To get around this difficulty we take a sequence of probability 

distributions zr,, ~'2," • •, with H(~ '3  < H(Tr:) < • • - H(Tr) and lim ~-~ = 7r, and at 

the ith stage set our sights on 7r~÷, rather than on zr. In the last preliminary 

lemma we write down the properties needed for the sequence {zr~}; the 

existence of such a sequence follows f rom the smoothness of H ( . ) .  

LEMMA 6. Given a probability vector 7r = (Tr(1) , . . - ,  , r (p))  with H(zr)  > 0, 

there exists a sequence {,r~} with 

(i) H(rr , )  < H(zr2) < - - -  < H(cr)  

(ii) l imi~  7ri = 7r 

(iii) If  ~r' satisfies I1 ' - 2IN-,  -  ,+111, then H(zr') < H(zr) (and by 
compactures H(Tr') < H(zr) - a,, a, > O) 

(iv) x~'ll~, - < 

2. The proof  of Theorem 1 will proceed via a number of  reductions.  

Suppose then that (X, ~,/~, ~b) is fixed once and for all, with a a generator,  

= Votk~a and 7r a probability vector  with H(zr)<=h(cb, a).  Let  {~ri} be a 

sequence of probability vectors satisfying the conclusions of Lemma 6. 

LEMMA 7. There i sane  >O, suchthat i fDi(rr , , /31)<e, /3 ,  C~t, thenforany  

> 0  there is a fl2C M satisfying 

(i) Di (~'2,/32) < 

(ii) d(/3,,/3) =< I1 ,-  211. 

We shall first deduce Theorem 1 from Lemma 7 and then continue with the 

reduction. 
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PROOF OF THEOREM 1. Applying Lemma 7 successively, after using the 

argument in Section 1 to get started, we obtain a sequence of partitions {/3~ } C M 

that satisfy 

(1) Di  (w~, 13,) < e, 

(2) d(/3,,/3,+0 <= lift, - rr,+ll], 

w i th  e~ -+ 0. F rom (2) and Lemma 6 we have that the/3~ converge to a par t i t ion 

/3 C a¢, whi le f rom (1) i t  fo l lows via Lemma 4 that Di  (rr,/3) = 0, wh ich  proves 

the theorem. • 

The next lemma formulates the idea of having the improvement in /3 

proportional to the change in a way suited to proving Lemma 7. This and a 

simple iteration will prove Lemma 7. 

LEMMA 8. Let  82, c > 0  be constants such that 11 '- 211<_-82 implies 

H (  zr') <- h (ck, a)  - c. Then for any 8t > 0 there exists a positive 8 which depends 

only on c, 8 ,  rr2 such that, if /3~ Cs¢ satisfies 

8, =< Di (~-2,/3,) < 82, 

there exists a 3~ C ~1 satisfying 

(i) Di(rr2,/3,)= < Di(rr2, /3 , ) -8  

(ii) d(/3,, ~,) <= 4(Di (rr2,/3,) - Di (~r2,/3,)). 

PROOF OF LEMMA 7. We remark first that 

(4) Di (~r2, 30  -< Di (~r,,/30 + 11~-2 - ~r,[[. 

Thus, if ~ is taken as Ilzr2- ~'lll, then by Lemma 6 we can put 82 = 2117r2- ~',11, 

and then the hypotheses of Lemma 8 are satisfied for any 81 < Di (w2,/3,). Now 

given e2 > 0  we choose 8z = e2. If Di(rr2,/3~)=< 8 ,  then we can take /32 =/3,. 

Otherwise, we can successively apply Lemma 8 until Di (7r2,/3,) drops below 8,. 

Using the triangle inequality we obtain finally a/32 C M with Di (7r2,/32) --< 8, = e2 

and 

(5) d(~l,  ~32 ) ~ 2Di (7V2, /31) ~ 2 l i f t2-  7nil 

by (4). This proves Lemma 7. • 

We make one further reduction before implementing the main idea of the 

proof. To simplify the notation we now drop the subscripts on zr~ and 3~, even 

though it is to them that the lemmas will apply. 
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LEMMA 9. Let 7r be a fixed probability vector, 7r = (rr(1), • • . ,  7r(k)),/3 CM a 

partition with k atoms satisfying h ( & , / 3 ) < = h ( & , a ) - c  for  c > 0 .  Let  6 > 0  

satisfy - 6 log 6 - (1 - 6) log (1 - 6) < c, and assume further that ]:or all large 

m, on a set o f  atoms B of  V 7 ck ~[3 of  total measure at least 6, we have, for some 

i,j: 

I~ (B, [B) - 7r(i) > 6,/.~ (B~ [B) - 7r(j) < - 6, 

then there exists a fi C ~l satisfying 

(i) Di(Tr, f i ) =  < D i 0 r , / 3 ) - 6 2  

(ii) d( /3 , /3)<=4.(Di(m/3)  - Di(m/3)) .  

As usual, we first use Lemma 9 to prove Lemma 8 and then finally we shall 

prove Lemma 9. 

PROOF OF LEMMA 8. Comparing the two lemmas, we note first that, since 

h(&,f lO<=H(dis t /30,  it follows from the hypothesis  of Le mma  8 that 

h(&, f l , )<-_h(&,a ) -c .  We have to show that Di(~r2,/30_-> 6, implies that the 

main assumptions of Lemma 9 hold. By the definitions, for  all large m 

(6) d(zr2,/3, [ ~/, ,b'/30 >= 6d2.  

Since I1 ~-2-dist  (/31[B)[I is at most one, it follows f rom (6) that for  a set of 

atoms B E VT~b~/3,, of total measure at least 6,/8, 

(7) lift2- dist (/3,1B)tl >= 6,/8.  

Now since there are only k atoms in/3~, it follows that for  each B on which 

(7) holds there is an i,j such that 

(8) 

< 1  1 
/x (B~"IB) - 7rdi) = ~--~- • ~ 6, 

t z (B~" IB) -  ~rdi) < 1 1 = 

Now we are in a position to apply Lemma 9 with any g < 1/2k • 6,/8 that 

satisfies - 6 1 o g g - ( 1 - 6 )  l o g ( 1 - g ) < c .  Then Lemma 8 follows im- 

mediately with 6 = g2. • 

PROOF OF LEMMA 9. Apply Theorem 5 to obtain a partition 3, = {C,X ~ C} 

with/x (C) = 6, {& ~y}7~ independent  and V 7~ q~'y independent  of V 7® ~'13. Then 
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use Lemma 2 with 3' =/3 and e = 3/10 to find no such that for any rn > n > no 

we have for 8/10-a.e. atom B of VT~b~/3 that f l / B  is 8/10-independent of 

vT+, ~'/3. 
We first define fi to improve the independence properties of/3, later we shall 

worry about getting it into ~¢. Let n >n0  be large enough so that: (i) 

IDi(Tr,/3) - d(Tr,/31 V7 ~b'/3) I < 1/100.85, and (ii) on a set of atoms B of V74~'/3 

of total measure at least 8 we have for some i,./ 

(9) U (B, IB) - ~ ( i )  > 8, ~ (Bj IB) - 7r(]) < - 8. 

On each atom B that satisfies (9) we modify /3 to fi by defining: 

(10) B , C ~ B = B ~ N B - R n B n C ;  B i f 3 B = ( B ,  n B ) U ( B ,  A B n C ) ,  

while all other atoms on B are left unchanged. Clearly we have that: 

d ( Tr, fi ~/ & ' [3 ) < d ( Tr, fl [ ~/ & ' fl ) - 2 3 2 , (11) 
I ] 1 

while, since all the change is in the direction of improving the independence, we 

have 

(12) ° fi° d( /3 , f i )<=d(n. , f l )  y ~' /3) -d(Tr ,  y &'/3) 

By the choice of no and Lemma 2 we deduce from (11) that for all m > n 

(13) d(~,  fir kT. &,fl) __< Di (Tr,/3) - 3/282. 

By the independence assumptions on 3' we get from (13) immediately that for 

all m > n 

(14) d(Tr, f i  ~ &'fl v ~/ q~'3")_< D i O r , / 3 ) - 3 / 2 6 2 .  
I l 

From the definition of fi we have that VT~b'fi 

V7 +"°+' &'fl v V74~y, and thus (14) with Lemma 3 implies 

(15) Di (rr, fi) =< Di (zr,/3) - 3/282. 

is coarser than 

Now we push fi into M as follows. Nothing changes if we replace 3' by &~'3', 

and since a was a generator, N can be chosen so that &~'y can be 
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approximated arbitrarily well by ~/C M. Applying now Lemma 4 with e = 1/262, 
and we get a/3 CM that satisfies (i) and (ii), and Lemma (9) is thereby proved. • 

This completes the proof of Theorem 1, the logical order being Lemma 
9 f f  Lemma 8 ~ Lemma 7 ~ Theorem 1. The argument has been presented in 

a different order in the hope of greater clarity. The proof given here can be 
pushed a bit further to prove a similar result for Markov chains, all of whose 
transition probabilities are positive. 
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